Improved diagnostic performance of a commercial *Anaplasma* antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5–glutathione S-transferase fusion protein as antigen

Chungwon Chung¹, Carey Wilson¹, Chandima-Bandara Bandaranayaka-Mudiyanselage¹, Eunah Kang², D. Scott Adams¹, Lowell S. Kappmeyer³, Don P. Knowles³, Terry F. McElwain⁴, James F. Evermann⁴, Massaro W. Ueti³, Glen A. Scoles³, Travis C. McGuire¹ ¹VMRD Inc., Pullman, WA; ²Chungnam National University, Taejon, Korea; ³USDA-ADRU, Pullman, WA; ⁴Washington State University, Pullman, WA

Introduction

Anaplasmosis is a tick-borne disease of ruminant livestock in tropical and subtropical regions caused by rickettsia of the genus *Anaplasma*, including *A. marginale*, *A. centrale*, *A. ovis*, and *A. phagocytophilum*. As *Anaplasma* invades and multiplies within mature erythrocytes, acute disease is manifested with anemia, weight loss, abortion, and death in infected cattle. In animals that survive acute disease, *Anaplasma* causes life-long persistent infection. These persistently infected animals are clinically healthy, but serve as reservoirs for continued transmission of the pathogen to other animals. Therefore, control of *Anaplasma* infection is enhanced by identification of carrier cattle using a highly specific and sensitive serodiagnostic assay.

Hypothesis

Removal of maltose binding protein (MBP) from the recombinant antigen used for plate coating in the commercial cELISA will further improve the specificity.

Materials and Methods

- **Sera from *Anaplasma* noninfected cattle** (*n* = 358) were collected as true negative set from dairy herds maintained in barns free of ticks that transmit *Anaplasma*.
- **Anaplasma-positive sera** (*n* = 135) were obtained as true positive set from cattle with positive results by both serology and nested PCR assays.
- An additional 163 sera were selected as possible false positive set from diagnostic samples submitted to the Washington Animal Disease Diagnostic Laboratory.
- Commercial rMSP5-MBP cELISA and novel rMSP5-GST cELISA were evaluated using three sets of sera in relative diagnostic performance.

Results

- The number of 358 sera with significant MBP antibody binding (≥30%I) in *Anaplasma*-negative herds was 139 (38.8%) when tested using the rMSP5-MBP cELISA without MBP adsorption. All but 8 of the MBP binders were rendered negative (<30%) using the rMSP5-MBP cELISA with MBP adsorption, resulting in 97.8% specificity (Figure 1A and B).
- To improve the specificity of the commercial cELISA, a new recombinant antigen designated rMSP5–GST was developed, eliminating MBP from the antigen and obviating the need for MBP adsorption. Using the rMSP5-GST cELISA, only 1 of 358 *Anaplasma*-negative sera, which included the 139 sera with significant (≥30%) MBP binding in the rMSP5-MBP cELISA without MBP adsorption, was positive. This resulted in an improved diagnostic specificity of 99.7% (Figure 1C).

Conclusion

- The improved cELISA maintained reliable analytical sensitivity and specificity in addition to producing 100% diagnostic sensitivity and 99.7% diagnostic specificity using the cutoff of 30%I determined by ROC analysis.
- The rMSP5-GST cELISA resolved 3 types of problems observed in the rMSP5-MBP cELISA, including MBP binders, nonspecific binders of unknown mechanism, and sera with %I near the cutoff (25–35%).
- Based on the high diagnostic performance demonstrated in the current study, the rMSP5-GST cELISA appears to be a simpler and more reliable serodiagnostic tool for bovine anaplasmosis with various applications including epidemiological monitoring and disease/disease-free certification.

References